Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 8th World Congress on Spectroscopy and Analytical Techniques Quality Hotel Globe | Stockholm, Sweden.

Day 2 :

Keynote Forum

Martin Ntwaeaborwa

University of the Witwatersrand, South Africa

Keynote: Luminescent nanomaterials and their applications

Time : 10:00-10:40

Conference Series Euro Spectroscopy 2018 International Conference Keynote Speaker Martin Ntwaeaborwa photo
Biography:

Martin Ntwaeaborwa is professor of Physics at the University of the Witwatyersrand in South Africa. He obtained his PhD from the University of the Free State in 2006. He has published more than 235 papers in prestigious journals and has given numerous invited talks at local and international conferences

Abstract:

Phosphors have many uses today in applications such as electronic information displays, solid state lighting, solar cells, advertising and theft prevention. By using urea-assisted solution combustion method, we prepared tunable multicolour and white light emitting rare-earths (Pr3+ and Dy3+) doped oxyorthosilicate (R2SiO5) (R = La, Y, Gd) phosphors. We have investigated the photoluminescent properties of LaYSiO5:Dy3+;Pr3+, LaGdSiO5:Dy3+;Pr3+, GdYSiO5:Dy3+;Pr3+ and La2-xGdxSiO5:Dy3+;Pr3+ (x = 0, 0.5, 1.0, 1.5 and 2.0) in powders and thin film forms. The films were ablation deposited onto Si (100) substrates using the pulsed laser deposition technique. Several deposition parameters were varied, including vacuum versus partial pressure of gas (O2 or Ar), type of laser pulse, and substrate temperature. The samples were analyzed using X-ray diffraction, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy and photoluminescnt spectroscopy. The photoluminescent (PL) data were collected in air under excitation by either a 325 nm HeCd laser or a monochromatized xenon lamp. The PL intensities were strongly dependent on the Pr3+ and Dy3+ dopant concentrations, the ratio of La to Gd, deposition condition and post-deposition annealing. Data from the scanning electron microscopy and atomic force microscopy showed that the major influence of the deposition conditions on the PL intensity was through changes in the morphology and topography of the films, which affects light scattering and out-coupling. The colour purity of the bands estimated using CIE coordinates confirmed that our samples were emitting tunable multicolour and white light. The elemental composition analysis indicated that there was a correlation among the EDS, XPS and TOF-SIMS data. The structure, particle morphology, surface chemical composition and electronic states, photoluminescent properties and possible applications of these materials in UV pumped LEDs will be discussed

Conference Series Euro Spectroscopy 2018 International Conference Keynote Speaker Oara Neumann photo
Biography:

Oara Neumann has completed her PhD and Postdoctoral study in Applied Physics at Rice University and MS from Weizmann Institute of Science, Israel, and Bucharest University, Romania. She is a research scientist in Naomi Halas group at Rice University. She holds 12 patents and she has published more than 25 papers in reputed journals.

Abstract:

Multifunctional plasmonic nanostructures have enormous potential in the treatment of solid tumors; however, tracking particles with drug cargo and triggering the release of the cargo in mapped tumors is still impossible. To overcome this challenge we have developed an MRI and fluorescent active nanostructure nanomatryoshka. This new nanostructure with IR plasmonic signatures is composed of a 50 nm Au core surrounded by dye molecules and Gd(III)-DOTA chelate doped SiO2 inner-shell and an outer Au shell. The experimental results demonstrates an enhanced T1 relaxation (r1 ~ 24 mM-1 s-1 at 4.7 T) compared to the clinical Gd(III)-DOTA chelating agents (r1 ~ 4 mM-1 s-1). Further, this design preserves the fluorescence signal (65%) after 24 hours of exposure, leading to enahanced fluorescence photostability (23x). This dual-imaging functionality nanosystem increases MRI sensitivity by concentrating Gd(III) ions into the Gd-NMs, reduces the potential toxicity of Gd(III) ions and dye molecules by preventing their release in vivo through the outer Au shell protection, and the terminal gold layer surface can then be functionalized to increase cellular uptake, circulation time, or thermal drug-release properties.

Keynote Forum

Kenith Meissner

Swansea University, UK

Keynote: Ultrabithorax-based Materials

Time : 11:30-12:10

Conference Series Euro Spectroscopy 2018 International Conference Keynote Speaker Kenith Meissner photo
Biography:

Kenith Meissner received his PhD from the University of Arizona, Optical Sciences Center in the area of ultrafast spectroscopy and semiconductor physics. He then served as a Postdoctoral Appointee at Sandia Naitonal Labs. After spending 7 years in industry developing noninvasive blood gluscose technology, Prof. Meissner returned to academia with positions at Virginia Tech (USA), Texsas A&M University (USA) and Swansea University (UK). His research focuses on biomedical optics and micro-/nano-materials.

Abstract:

Ultrabithorax (Ubx) is a Drosophila melanogaster transcription factor protein the Bondos group discovered has the ability to form ordered materials in vitro. Ubx monomers are produced in E.coli and, following purification, are suspended in a buffer solution and where they do not aggregate in the volume of the solution when refrigerated. When allowed to rest at room temperature, the monomer self assembles at the air/water interface through nucleation, fibril formation and, eventually, film integration. The the self assembled film can then be pulled into a fibre with diameters in the range of 2–50 μm or lifted off as a film with microscale thickness. These materials are highly elastic and maintain physical properties through cycles of drying and re-hydrating. Novel functions can be directly incorporated into Ubx-based materials via gene fusion to produce chimeric polypeptides capable of both self-assembly and the desired chemical reactivity. Unlike most protein-based materials, the gentle conditions under which Ubx self-assembles enable incorporation of active heterologous proteins. This talk will review recent work on the continued development of this unique materials system including mechanical properties enabled by dityrosine bonding between monomers, dynamics of surface film assembly, and advances in Ubxbased
materials production.

  • Cancer Nanotechnology | Ceramic and Glass Materials | Future of Nanotechnology | Graphene Technology | Green Nanotechnology | MEMS & NEMS | Microtechnology | Multifunctional Nanobiomaterials | Nano Coatings | Nano Electronics | Nano Medicine | Nano Toxicology | Polymer Chemistry | Quantum Dots | Nano Sensors | Nano Robotics | Nano Photonics and Optics | Nano Pharmaceutical | Nanosponges | Nanotechnology – The Future Path | Spectroscopy tools in Nanotechnology

Session Introduction

Luiz Cesar Martini

State University of Campinas, Brazil

Title: Theoretical formulas of the elementary particles in the scope of nanoparticles and nanotechnologyy

Time : 11:30-12:00

Biography:

Luiz Cesar Martini is currently working as a Professor at the Faculty of Electrical and Computer Engineering, State University of Campinas, City of Campinas- São Paulo-Brazil. He received his Postgraduate degree at State University of Campinas, Brazil in 1989. After spending great effort since 1977 creating and developing the "Dimensional Continuous Space-Time Theory", relating time and space, he completed it successfully in 2005 and published some results in 2013-2014

Abstract:

This lecture, within the scope of nanoparticles, will present the theoretical formulas of particles elemental proton, electron and neutron based on the fundamental equation of the continuous time space published in the book by Gaol F L, Shrivastava K N, Akhtar J, Martini Luiz Cesar, Introducing the Dimensional Continuous Space-Time Theory in “Recent Trends in Physics of Material Science and Technology” Series. The fundamental dimensional equation of continuous time space allows to explain many physical phenomena related to nanotechnology, deducing theoretical speed of light in the empty space, mass of particles elementary, periodic table, formation of orbitals, wave duality particle, etc., as well as the macroscopic phenomena of formation of the universe and characterization and equation of time and space.

Biography:

Mei Liu received his Master degree from School of Biological Science and Medical Engineering, Southeast University in 2017, and is now a PhD student in Southeast University. His research interests include aptamer selection, nucleic acid nanotechnology and their applications for the diagnosis and therapy of cancer. He has published six SCI papers eight as first author or co-author.

Abstract:

Breast cancer is a highly heterogeneous tumor with four major molecular subtypes, which has become the second leading cause of death among women
in the world. In clinic medicine, different breast cancer subtypes show distinct
response to the therapy and prognosis and the molecular classification of breast
cancer remain a challenge, which depend on highly specific molecular probes. In this study, a ssDNA aptamer with high specificity and binding affinity to SK-BR-3 cells was obtained by Cell-SELEX method. Followed in vitro studies demonstrated that the aptamer can not only distinguish SK-BR-3 breast cancer cell line from MDA-MB-231, MCF-7 breast cancer cell lines and MCF-10A human normal mammary epithelial cell line, but also can differentiate HER2-positive breast cancer tissues from Luminal A, Luminal B, triple-negative breast cancer tissues and adjacent normal breast tissues, indicating its great potential for the molecular classification of breast cancer subtypes. Moreover, the in vivo experiments of the aptamer also demonstrated its good targeting ability against tumor-bearing mice of SK-BR-3 breast cancer cells. All these results demonstrated that the aptamer could be further developed into a novel molecular probe for the precise diagnosis and a highly effective biological missile for the targeted therapy of breast cancer.

Biography:

Carla I P Aguilar is an Engineer. She has completed four Master’s Degrees’ in Manufacturing Engineering, MBA, Finance and Environment. She has also four specializations in Management, Groundwater Modelling, Energy, Water Quality and Bio-indicators, and multiple courses in various engineering and management fields worldwide. She did her research at Ècole des Mines de Paris for 10 years in special techniques and economics in sub-soil exploitations. Currently, she is a PhD candidate at University of Central Florida. She has participated in exhibitions and as speaker in various conferences around the world for many years. She has also published various papers in topics such as: agriculture, remote sensing, modelling and land used optimization are among others. She has been a Consultant for various companies in Colombia-South America and at international level. She has also been widely involved in social work and sustainable development.

Abstract:

The two applications that used clays with particular sizes from 3 Å to 5 Å were
implemented in the dehydration of food and in ballast water treatment. The former allowed the concentration of vitamins, augmentation of inulin content, improvement of probiotics’ bacteria count and preservation of more than 1000 products for periods longer than one year without employing chemicals. The latter contributed to destroy bacteria in ballast water and also to remove seawater in oil by products and recover their characteristics to be reused for the same application or as a lower grade product; important outcome especially during oil spills. The process consists of using clays as filters in a vacuum chamber and tuning the changes of temperature and pressure by trial and error until the maximization of desired characteristics is obtained. Results showed that vitamin content could increase at least five times more than the natural product for the same analyzed quantity, for inulin content three times more and probiotics’ bacteria count up to five times more. For ballast water, with initial count at 1:1 dilution, 8 cells/g were found; after the clay nano-filter process at 1:100 dilutions, less than 100 cells/g were counted. For seawater and sediments at 1:100 dilutions before the treatment 1200 cells/g were found, while after the process at the same dilution, only 100 cells/g were counted. For the oil based components, different viscosities and seawater mixes of 50%-50% and 25% oil and 75% seawater were tested in a 12- hour and 24-hour cycle. Water removal results between 65%-80%. The viscosities and seawater removal of the three studied oil based components determined the final applications.

Biography:

Z Li is currently a PhD student at School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. He joined Prof. Darren Sun’s group in 2015. His re-search focuses on fabrication and application of bio-inspired super-hydrophilic materials

Abstract:

Oil contaminated wastewater from industry and oil spills threatens our environment and sustainable development. Conventional separation methods are suffering from several limitations. Membrane technology as well as nano-technology shows great potential in oil-water separation. Inspired by the stomata of leaves, a smart photo-sensitive hierar-chical nano-fibrous membrane was success-fully fabricated by a facile and highly effec-tive method with the combination of elec-trospinning and hydrothermal reaction in this research. ZnO nanorods can easily grow on the electrospun PSF nanofibers to form three-dimensional hierarchical structure with large specific surface area by hydrothermal reaction. Due to the photo-sensitivity of ZnO nanorods, without UV light, the surface is super-hydrophobic and air gaps in the pores will prevent the passage both of water and oil, while under UV light irrita-tion, the surface becomes super-hydrophilic and water will be able to pass through the membrane leaving oil at the other side. This photo-responsive nano-fibrous membrane shows excellent performance for oil-water separation.

Brahamdutt Arya

CSIR- National Physical Laboratory, India Academy of Scientific and Innovative Research, India

Title: Graphene oxide-chloroquine induced p62/SQSTM1 mediated necroptotic cell death in A549 lung cancer cells
Biography:

Brahamdutt Arya is currently pursuing his Doctoral Degree under the supervision of Dr. Surinder P Singh at CSIR-National Physical Laboratory, New Delhi, India. He received his Bachelor’s Degree in Chemistry Honors from MDU, Rohtak, India and Master’s Degree with specialization in Organic Chemistry from University of Delhi, New Delhi, India. At present, he is working on the fabrication of gold and graphene oxide based on multifunctional nanomaterials and exploring their applications in bio imaging, drug delivery, and photothermal therapy for development of targeted and personalized nanomedicines. Also, he is developing the Indian National Standard for the gold nanoparticles.

Abstract:

Graphene oxide (GO) alters the autophagy response through toll like receptor
signaling, lysosomal dysfunction, mitochondrial destabilization and NF-κB
pathways. On the other hand, chloroquine (Chl) an FDA approved drug inhibits
the autophagy and has also shown anticancer potential. In the present study, we
endeavored to conjugate Chl with highly exfoliated GO nanosheets and test its
antiproliferative activity on A549 lung cancer and BEAS-2B normal lung cell lines respectively. Morphological parameters have been analyzed through HRTEM, FESEM and AFM techniques. Also, TEM has been employed for analysis ofcellular components on exposure of GO-Chl nanoconjugate. Further, structural,functional and optical properties of GO, Chl and GO-Chl have been investigated using Raman, FTIR and UV-Vis spectroscopy respectively. MTT assay has been performed for in-vitro cytotoxicity evaluation of GO, Chl and GO-Chl exposure on A549 and BEAS-2B cell lines and demonstrated that GO-Chl treatment exhibits significant cell death in A549 lung cancer cells, in contrast to an almost 90% cell survival in normal BEAS-2B cells. The flow cytometric and DCFDA assay reveals that GO-Chl has been internalized through clathrin mediated endocytosis mechanism and indicates enhanced level of ROS. Further, the autophagy response in A549 cells due to GO-Chl treatment is investigated through fluorescence
microscopic analysis (MDC staining and GFP-LC3 plasmid), TEM observations and immunoblot analysis. Enhanced level of LC-3 I/II and Atg-5 markers signifies the autophagosomes formation and elevated expression of p62/SQSTM1 indicates the inhibition of autophagy at later stage. The co-immunoprecipitation assay
reveals necroptotic cell death in A549 cell lines on exposure of GO-Chl.